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The problem of finite-time stability of switched genetic regulatory networks (GRNs) with time-varying delays via Wirtinger’s
integral inequality is addressed in this study. A novel Lyapunov-Krasovskii functional is proposed to capture the dynamical
characteristic of GRNs. Using Wirtinger’s integral inequality, reciprocally convex combination technique and the average dwell
time method conditions in the form of linear matrix inequalities (LMIs) are established for finite-time stability of switched GRNs.

The applicability of the developed finite-time stability conditions is validated by numerical results.

1. Introduction

In recent years, GRNs have received much research atten-
tion, and many interesting results have been reported [1-8].
Generally, there are two types of gene network models, the
Boolean model [9] and differential equation model [10]. In
the Boolean model, the state converges to a terminal state via
a series of state transitions that is determined by the Boolean
rules. In this model, the activity of each gene is expressed in
one of two states, ON or OFF, which is determined by
a Boolean function by its own and by other related states.
Whereas in the differential equation model, the variables
describe the concentrations of gene products, such as mRNA
and proteins as continuous values of the gene regulation
system, and also, this model talks about the concentrations
of gene products such as mRNA and proteins as variables in

GRNs [11-14]. There are many research results on the
stability analysis for GRNs with time delay (e.g., [15-18]).

Time delays are ubiquitous in many fields because of
finite propagation speeds of signals, finite processing times,
finite reaction times, and finite switching speed of amplifiers.
Since the biological system especially GRNs is a slow process
of transcription, translation, and translocation [19-23], the
time delay cannot be avoided. From the long term in-
vestigations, time delay will bring instability of the system,
sustained oscillations such as bifurcation [24-26]. So, it is of
great importance to deal delayed GRNs. For instance, in
[27], authors presented a different equation model for GRNs
with constant time delays and proposed stability analysis for
GRNs with time delays. In [28], authors developed delay
dependent criteria for stability of GRNs with delay and free-
weighting matrices.
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On the other hand, Markovian switching and switched
systems have been studied extensively over the past decades,
for its capacity in modeling practical systems and its po-
tential applications. Including a variety of subsystems as
constituent parts, switched systems are governed by
a switching rule to coordinate the switching. Recently, the
stability problem of Markovian jump GRNs and switched
GRN s has been investigated in [29-34]. As we all know, most
of gene networks contain some kinds of switching mecha-
nisms. For instance, by increasing stimulation or by
changing some regulatory mechanisms, a bistable system
can switch from one steady state to the other. In [33, 35-39],
authors investigated the stability for switched systems with
time delays by utilizing an average dwell time approach.

Recently, many kinds of finite-time issues have attracted
particular research interests, and there have been some
results on finite-time stabilization and synchronization
[40-47]. However, to the best of the authors knowledge,
there have been very few results on the finite-time stability
problem for delayed GRN's with time delays [48, 49], and the
purpose of this study is therefore to shorten such a gap.

Motivated by the above discussion, in this study, we are
concerned with the finite-time stability of switched GRNs,
where the parameter values switch from one mode to an-
other. By utilizing the average dwell time approach and by
using a novel Lyapunov-Krasovskii functional, it is shown
that the finite-time stability problem is solvable if a set of
linear matrix inequalities (LMIs) is feasible. Finally, three
examples are provided in the end of the study to show the
effectiveness of the proposed criteria.

The rest of this study is organized as follows: in Section 2,
preliminaries and problem formulation are given. In Section
3, some conditions are established to ensure the finite-time
stability of the considered system. In Section 4, three ex-
amples are illustrated to show the effectiveness of the ob-
tained theoretical results. And finally, conclusions are given
in Section 5.

Notations: throughout this study, R, R”, and R™"
denote, respectively, the set of all real numbers, real n-
dimensional space, and real n x m-dimensional space.
| - || denote the Euclidean norms in R”. For a vector or
matrix P, PT denotes its transpose. For a square matrix
P, Ao (P) and A_;, (P) denote the maximum eigen-
value and minimum eigenvalue of matrix P, re-
spectively, and sym (P) is used to represent P + PT. For
simplicity, in symmetric block matrices, we often use *
to represent the term that is induced by symmetry.

2. Problem Description and Preliminaries

Consider the following nonlinear GRNs with time-varying
delays described by

{él(t) =—Ae, (t)+Bf (e, (t — 7(1)) + I,

1
é,(t) = —Ce, (t) + D (e, (t — o (1)), (W

where e, (t) = [e), (t), ey, (), ... e, (D]T € R", e, (t) = ey,
(t),e5 (1), ... ,eZn(t)]T € R™, e,; (t) € R are the concentra-
tions of mRNA and protein, respectively; f (-) = [f;(-),...,
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fa(OI" is the regulatory functions of mRNAs,
A = diag(a,,a,,...,a,) and C = diag(c,,c5, .. .,c,) are the
constant matrices, and they are the rates of degradation; D =
diag(d,,d,, .. .,d,) represents the translation rate; B = (bl-j)
is the regulative matrix, and 7(t) and o(t) are the time-
varying delays.

For obtaining our conclusions, we make the following
assumptions.

Assumption 1. f: R — R, s=1, 2, ..., n are mono-
tonically increasing functions with saturation and satisfy

o @£ B

o St Va,beR,s=1,2,...,n, (2)
a—

where u, s=1, 2, ..., n are the nonnegative constants.

Assumption 2. 7(t) and o(t) are the time-varying delays
satisfying
0<7,<7(t) <155
7(t) <1< 00,
0<o,<0(t)<0,,
o(t)<o0,<00, )
T =T~ T
O12=0,= 0y,
where 7, 7,, 0, 0, are the constants. The initial condition of

system (1) is assumed to be

—p<t<0,p = max{1,,0,}. (4)

Use the following transformation:
x(t) =e (1) —¢ 0",

5
(1) = e, () —ey (1), ®

where ef = [ef,el,,...,e, ] and e} = [ef},eh,... el )"
constitute an equilibrium point of system (1) and then shift
the intended equilibrium point to the origin. In this way, the
system equation turns to be

{J&(t) = -Ax(t) + Bg(y(t — (1)),
y(t) =-=Cy(t) + D(x(t - o(1))),
where  g(-) =1[g,(),...
(y()+e3) = f,(e).

According to Assumption 1 and the definition of g, (-),
we know that g,(-) is bounded, that is, 3F >0, such that

(6)

,9,(O1", and g, (y (1) = f,

lgs()I<F, s=1, 2, ..., n and satisfies the following sector
condition:
0<% D VaeRiohs=1,2...n ()

a

Let U = diag{u;,u,, ..., u,}.

Sometimes, GRNs were described by the continuous
time switched system, as in [33]; so system (6) can be de-
scribed as the switching system with switching signal:
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x(t) = —Ap(t)x(t) + Bp(t)g (,‘V(t -7(t)),
() = =Cpyy (1) + Dy (x(t - 0 (1)),

where p(t): [0,00) — N ={1,2,...,N} is the switching
signal, which is a piece constant function depending on time
t. For each i € N, the matrices are constant matrices of
appropriate dimensions.

For the switching signal p(f), we have the following
switching sequence: {(ig,ty), ..., (i tg)s .. i € Nk =
0,1,...}; in other words, when t € [t t,;), ii" subsystem is
activated. To assume x(t) = ¢(t), y(t) = v (2).

For proving the theorem, we recall the following defi-
nition and lemmas.

Definition 1 (See [50]). The system (8) is said to be finite-
time stable with respect to positive real numbers (¢, ¢,, T), if

OO +1¥ )7 <c; = lx O +ly 0I° <c,,  t € (0,T],
9)

where

[J:_’: w(s)ds]TM[J'i_:: w(s)ds
[J:: J;e w(s)ds]TM[J::; w(s)ds

Lemma 2 (See [53]). Let fy, f,, ..., fn: R" — R have
positive values in an open subset D of R™. Then, the re-
ciprocally convex combination of f; over D satisfies

min Z fi(t) + max, Z i, (1)

{5i|5i>oz,ﬁi:1} i i#j (13)

subjected to
. R™ B fi®) g;;(0)
{gij' R™ — R, g, (t) = g;; (0), [gi,j(t) £, :|20}.
(14)

Lemma 3 (See [54]). For a positive definite matrix M >0,
the following inequality holds for all continuously differen-
tiable function x(t) in [a,b] € R™":

b
“(b-a) J £ ()M (s)ds < — DT M, - 3 - O M,
(e )M o0 [,
Lo 5 Lo}
(15)

where 21)1 =x(b) — x(a),

', )J o and @, =x(b)+x(a) -2/
—a) | x(s)ds.

1D (D = sup_pcpco{ I DI 16 (D)1},

. 10)
¥ (Ol = sup_pepoily DI, 1 (DI}

Definition 2 (See [51]). Forany T, >T, >0, let N, (T}, T,)
denote the switching number of p(t) on an interval (T, T,).
If

TZ_TI
T

N, (T, T,) <N, + (11)

a

holds for given Ny >0, 7, >0, then the constant 7, is called
the average dwell time and N is the chatter bound. Without
loss of generality, we choose N, = 0 throughout this study.

Lemma 1 (See [52]). For any constant matrix M € R™",
M =M">0, scalars n,>n,>0, and wvector function
w: [ny,1,] — R" such that the integrations concerned are
well defined, and the following inequality holds

] <(m—-m) J E w' (s)Mw (s)ds.

t=r
(12)

<@?WQJWJ‘ T d
S5 Hew (s)Mw (s)ds.

>

3. Main Results

In this section, we present a finite-time stability theorem for
switching genetic regulatory networks with interval time-
varying delays (8).

Theorem 1. The switched genetic networks (8) is finite-time
stable with respect to positive real numbers (c,c,,Ty) and
constants a,,0,, T;, and T,; if there exist symmetric positive
definite matrices P,;,P,,Q,;(n=1,2,3),R,;(n=12,...,
12),S,;(n=1,2,...,4) for all i e N, the diagonal matrix
L, =diag(ly,,, L5, - > 1,,) =0,m = 1,2, and positive scalars
u=1 and a; = a>0 such that the following LMIs hold

Ry My | >0
* Ry | ’
Ry Ry >0
* Rg | ’
[RS" Rsi | 20, (16)
* R |
|:R10i Ry >0
* RlOi:
[Rm My, >0
* Ry |
O = [®ij]22x22 <0, (17)



Complexity

Py<uPy I=1.2, and the average dwell time of the switching signal p (t) satisfies
Tlny;
Qi <pQy 1=1,2,3, Toi> Ty = = (20)
18 ai ai _ o, T >
Ry<uRy, 1=1,2,...,12, o In(e2( +12) ~ie(eM )
My spuM,j, Sy<pSy,  1=1,2,3, where
N
e{Zi:l aiT}dCI < CZ (/\1 + Az)) (19)

T pT 2 2 —ao —ao
0Oy =-P;A-A P;+Q,; + Q3 + 01Rs; + 01,R5; —3e 'Ry —e 'Ry +aPy;,
O3 =¢ "Ry —3e 'Ry,
®,,0 = P;;B,® —E “YIR
110 = 1B, Y13 = —e 7i>
0y
©,, =R, + Ry; - P,,C - C'PL + 1R, + 75,R TONR, -3¢ R P
22 = Iy Ry — G- 2i T TRy + Tk — € 11i ~— 0€ 11 T &)
0,4 = P;D,
— QT — AT
Oy =€ "Ry —3e TRy
T T
O,y =M;;+U L,

6
_ —aTy
B3 =—e Ry
T

P
Il

- — a0, _ —ag; _ p a0 _ a0,
e Q) +e Q,—e R, —3e R, —e Rg;,
®s = —¢ “RL +e "R

34 = —€ g T € 8i>

o 6 _
_ a0, _ oy
O35 =€ PRy, 055 = . e 'Ry,
1

Oy =-(1-0y)e M([)Q3i +2e “Ry; — 2 “Ry;,
—ao, T - ao,
Oy =e "Ry +e TRy,
O.. =¢ T -anp
ss=e Qe 8i>

_ _man —ar, _man AT _man
Og=—€ "'Rjy+e 'Ry —e 'Ry —3e TRy —e TURyy;,

—at(t —QaT, — T
0y = ~(1-14)e ( )Rsi +2e "PRpy—2e TPRyy;,
O, = e ““R +e “2R
78 =€ 12i T € 12i>

O30 = (1~ Td)e_M(t>M1i +UL,,
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—at, pT —aT,
—e "Ry —e 7Ry,
R, -2L,,

—(1-14)e” "Ry - 2L,,

) 5 we—ao, — 1 we > —e"" —a(oy,—0y)
0 R, +0,Rg; + e 5 Si+e 5 Soi>
o o
5 ) we P —ar, — 1 we =" —a(r, - 1))
TRy + TRy +e ————S; +e 3 S4i>
o o
12
a0, —ao; _ a0,
—€ 'Rs;——e 'Ry, 014, = —€ Ry,
1
a0, o _ a0,
—€ ?Rg;, ©155 = —e Ry,
ot
N ITR
ot
—€ Sy
12
aTy -ty
—e 'Ry; - ?e Ry
1
aT, _ aT, Ty
—€" Ry Oro50 = —€" Ry
t
‘earleoi) Oy = —e" S3i>
at
—e" Sy
— a0, — a0, — a0, -ty
A+ A, + A0 +Ag (0, —0y)e +A,0,e +AgT
3

1 —ao;

_ _ _ _ o
+ Ao (1 — 1y)e T+ Agrae 4 24 The TR+ ApTe YT+ )LB?e

(0,-0,) o) (r,-1,)° T
t A e L e L 2T g ) e
2
3 3 3 5
(Tz B Tl) —at, T —ar (72 B Tl) — T, 0| —a0
+ Ag———¢ +)ng?e Lt hyy———¢ +/\21Z‘3 !

2 2 5 2 2 3
cr—a)cr o (T—T)T—T
+A22( 2 1 ( 2 1) o % +A23ieﬂxrl + 2 1 ( 2 1) e on
4 4 4

Mine\Apin (Py;)> Ay = minjeyApin (P> A3 = maXien Aoy (Py;)s
MaX;nAmax (P2i)s As = MaXienAmag Qi) Ag = MaXienAmay (Qui)s
MAaX;enAmax (Qsi)s A = MaXienAmay (Ryi)s Ao = MaXienAmax (Ryi)s
MaXienAmay (Rai)> A1z = MaXjenAmax (Ryi)s Az = maXigyd gy (Rs;),
MaX;enAmax (Rei)s As = MaXjenAmax (Rpi)s Ae = MaXjenAmay (i),

R10i)>A19 = MaX;enAmax (Rlli)’

MaX;enAmax (Roj) A1s = MaXienAmay (
maXiEN/lmax (R12i)’ AZI = maXiGNAmax (Sli)’ /\22 = maxieN/\max (SZi)’

maX;enAmax (531')) Ay = maX;enAax (S4i)-

(21)
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Proof. Choose the Lyapunov functional candidate as where

Vi () =Vipw +Vapwy + Vapw + Vapwy + Vspwy + Vepay
(22)

Vipw = x"(OPyx () + y" (DPyy (1),

t t—o,
Vi = | 05T 0Qux(ds + [ e 0 (90, (9ds

t-0, t-0,

t
+J 60T ()0, (5)ds,
t—o (t)

t t—1,
Vipw = Jt—r e T(S)Ruy(s)dﬁj "y (5)Ryy (s)ds

t-T,

T

¢ y(s) Ry My; y(s)
o gyl L+ Ry llay(s)

-0,

t
J 01,6 DT (5) Ry ()dsdd (23)
t+60

t+6

0t
Vapw) = J', J 01" x" ()Rypx (s)dsdf + J

-0,

—0

0t
+ J J 0,6 5T ()R, % (s)dsd + J

t+6

1 (t
J 0,,e" VX" ()Rg;% (s)dsdo,
t+0

-0,

-7

=T

0t Lt
Vipo = L Le 7,6 T(s)Rg,y(s)dsdmI Le £1,e 0T (R, (5)dsdf

-7,

0 t t
+J J 7,55 05T (R, y(s)d5d6+J J £ ,e 05T (R, (5)dsdb,
_ t+0

t+6 )

0 0 pt -0, 0 (t 1
VGP(t) = J_U Je th 021ea(s 9% T(s)th(s)dsdvd6+J'_g Je Jt+v5(0§_01) als=0y T(s)Szlx(s)dsdvdG

0 0t 2 -1, 0 rt 1
+ J J J T gos D57 (5855 (s)dsdv d6 + I J J (T; _ Tf)ea(s— 05T ()8, (s)dsdvde.
e -1, J 0

0ty 2 t+y 2

Taking the derivatives of V) along the trajectory of
system (8), we have that

Vipw = 2x" (£)P% (1) + 2y (£)Py 9 (1), (24)

Vzp(t) ==V, + x! B)Qux(t) —e” ao y T (t—0,)Qux(t - 0y)
+e %x" (t—0))Qux(t—0,) — e **x" (t — 0,)Qux(t - 0,) (25)
+x" ()Qyx (1) = (1 =5 (t)e " x" (t — 0 (1)Qyx (t — (1)),



Complexity 7

Vi) = =8V 350 + Yy ORy () —e Ty (- T)Ryy(t—1) + e Ty (- T)Ryy(t- 1))
y® V1R, M, (t)

_‘“Tth_ R,’ t— + [ 3i 11][ Y
e )’ ( TZ) Zy( TZ) {g(y(t))} % R4i g(y(t))

—U—%Unemm[ Y-t T[RyAaq[ ye-T(®) ]

gy (t-1()) * Ry |[g(y(t—1(1) 06
< —aVipp + )’T ()R y (£) - eiml)’T (t=1)Ryy(t—1))+e Ml)’T (t=1)Ryy(t—1))
T
y () R, M, t
_e—tx‘rz T(t—T)R~ (t—T)+ 3i 1i }’()
y 2)89iY 2 R
gyl L * Ry llgly®)
-ﬂ—wmm{y“4M)TVy%q[ﬂhﬂm]
gy (t-7(1) gy t-7(®)
t
Vipo = ~aV iy + 07" (DRsx (£) - Jt_g 7," VxT ()Rgx (s)ds
t—0y
+00,x" (H)Rgx (£) - J 01,e" T (5)Rg;x (5)ds
tt—az (27)
+ 25T (R, (8) - L_ 0, T (R, % ()ds
t—oy
+07,%" (H)Rg% (t) - L_ 01,6 5T (5)Rgi% (5)ds,
. t
an:ﬂﬂwﬂ*ﬁnﬂ&J@—LﬁﬁgSQT®&J®¢
t-T,
# iy ORy (0= [ 1T Ry (9ds
2.T ! (s=1) T (28)
+ 71y (DR, (1) = J'ti 7,67y (5)Ry;y (s)ds
t-1,
+ 3 ORI O = [ 165 IR (s,
; ot -T e - a0, — 1 . at [© Lo .
V) = ~&Vgpn + €% (t)T Sux(t)—e J_U Jm)x (5)S,;x (s)dsdO
ou:r2 _ a0 _ -0, (t
v (e m (@m0 g Ly J J T (5)8,% (s)dsdf
o -0, J t+0 (29)
t.T T —ar, -1 A R L
pe T (T T g ) e J j 37 ()85 (s)dsd6
o -1, J t+6
ot‘r2 _oar _ -1, [t
a1 C o) PR J J ()85 (s)dsd.
o -1, J t+0
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From Lemmas 1 and 3, we have

t t ! !
e““-”xT(s)Rs,-x(s)dsﬁ‘e%(J x(s)ds) RS"(J x“)ds)’

t—oy t—o,

t (07 TR, 0 [P, ()
-0, J IR (R, (s)ds< —e ,
o D, (1) * 3Ry [ @, (1)
(30)
t t T t
o[ e amtadss ([ o) ([ voos)
t-1, t-1, =1y
o T
! oc(s t) T —-ar ’ ® Ry 0 Ps )
-1, J 9 ()R y(s)ds<e ™1 ,
o D, (t) # 3Ry LD, (1)
and from Lemma 2, we can obtain
t- - t—o (1) .
—0p J' ey (s)Rgx (s)ds = —op,e” ™ J' x (s)Rgx(s)ds
t-0, t-0,
T _ (31)
— a0 =0 T —ao WI _Réi R6i WI
—0,e 2 j X" (S)Rgx(s)ds<e ™ .
t=o(t) v, *  —Rg Il v,
Similarly, we have
t 2 ! R, R
—0; 3 —Rg; ;
—oy j a(s t) T (S)R&x (S)dS <e - a0, [ 8i 8i ] |: Y3 ]) (32)
t—0, 1//4 * . w4
t-1, ( t) " t—1(t) T
Ty, Jt e (s)Rygix (s)ds = —T,e” "™ Jt x (s)Ryp;x (s)ds
-7, -7,
T _ (33)
t-1, 14 —R... R
_lee— aT, J- XT (S)Rmix (s)ds < e—ot‘rz 5 [ 10i 10i ] |: Vs :|
t-(t) v | * Ryoi JL Vs
' (71T -R,y; R
T 7 — .
~15 J- T(s t) T(S)RIZIX(S)dS <e T [ 12i 12i ] |: ¥ :| (34)
t-1, Ly, * =Ry [ s

where



Complexity

t—o (t)
Yy, = J x (s)ds,

t—0,

t—o,
v, = j x (s)ds,

t—o ()
vy =x(t-o(t)—x(t-o0,),

vy =x(t—0,) = x(t—-0o(t),

t—7(t)
=] s

t—1,

=1,
Ve = J ¥ (s)ds,

t—7(t)
v, =y(t—1() - y(t-1,),
vy =y(t—1)—yt-1(t),

O, (t) = x(t) — x(t — 0y),

D, (t) = x(t) +x(t—01)—ai jt x (s)ds,

1 Jt-0o;

O () =y ()~ y(t—1)s

t

CD4(t):y(t)+y(t—11)—T£J y(s)ds.
1

t-1,

Meanwhile, for any L, =diag(l,,., L -->
lyn) =20,m = 1,2, the following inequality is true from As-
sumption 1.

-2 z Ligi (v () [9: (y: (D) — u;; (1)]

- zilz,-gi (it =1 [g: (i (£ = T(@)) —w;y; (£ — T(1))] > 0.
B (36)
It can written as
—2gT (y())Lyg (y (1) +2y" (1)UL, g (y (1)
~2g" (y(t = T(O)Lg (y (t - T(2))) (37)
(35) + 2y (t = T()UL,g (y (£ - (£))) 2 0.

What is more, the following equations are true for any
matrices N, N, with appropriate dimensions from system

(8).
27 (t)N,[-Ax(t) + Bg(y(t —7(#))) - x(t)] =0, (38)

25" (N, [-Cy (8) + Dx(t—7(1)) - y()] = 0. (39)

From (24) to (39), we have that
Vp(t) —aV, < &0, (40)

where

fT(t)=[xT(t) Yy x'(t-a) x'(t-a@) x'(t-0) y (t-7))

Tt-t) Yy (t-n) g @) g Ge-1m) @ y© j x' (s)ds

y
t—o (t) t—o 0 t -0, (t

j T (s)ds J T (s)ds J J £ (5)dsdd j j £ (s)dsdd (41)
t-o, t—o (t) t-o, J t+0 -0, J t+0

t t—7(t) t-1, 0 t

j T (s)ds J T (5)ds J J7 (s)ds J j 7 (5)dsdd

t— Tl t-7, t-7(t) t—1, J t+60

j J Fu (s)dsde].

By condition (17), we have

V OREGAZTOR
Note that
d —at
a(e Vo) <0.
For any T>0, let t,=0, and we
o bty by s bipe by, omand ity ooty

the switching times on the interval [0, 1], where

M
N,(0,T) = Y N, (0,T). (44)
(42)
By integrating (43) for any t € [t;,t;,,], we find that
Voo < (1) (= ti)Vp(t)' (45)
(43)

From (18), we can obtain

denote p@_w(pt p(t; )), V(p(t) =ip(t;) = j) eNxN.i#j.
5 tNP (0,T) as (46)
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By substituting (46) into (45), we can obtain

P S

i g}
p\ N, (1) (O
e Np® V(fNP(o,t)a p(pr(o,t)>)
{ o (t—tNP(O,t)) }
P\ tN, (0)
e ( P ) V<xtzvp(0.t)’ p<tNP(0,t)—1>>

(o, 00)
. m))e{a" e ) |
V{stgune {v0me)) g, )

INp 1)1

Sy(

' OT)-
N, (0.1)-1 Ziop o l(“P(f1+1)+aP(!1))t’*l+a
= H Hp(t1)®

=0

{Z, (T, 0D )nps Y 0T ( oT)} (xt ,P(fo))
< e{ X ((ln”‘/r“")m’)T}V(xzo’ p(ty)).

T+a,(,
P(‘Np(OYT)) e }V(xtg’ P (tO))

On the other hand, it follows from (22) that

Vo0 (0) = x" (0)P,;x(0) + y' (0)P,,;y(0) + Ji “Ox’ (5)Qux (s)ds + J " e“Ox" (5)Qyx (s)ds

0

0
+j & T(S)Qs,x(S)dHJ ey ()R, ()ds
-0 (0)

T

. 0 y(s) ! Ry My; y(s)
IO 3" ()Ry;y (s)ds + J. e ds
) —1(0) D)

g(y(s) * Ry llg(y(s

o, (0
016" T(s)RSx(s)dsd9+I J 016" %" (5)Rgpx (s)dsd
0

03

0 —02

0

‘rlea(s) T(S)R% (s)dsd0 + Ji 2 j leea(S)yT ($)Ry4;y (s)dsdO
-7, J 0

7, (0
7,6* 997 ()R, ;7 (5)dsd + J J 715" 5T ()R (5)dsdf

J

1.1

o Oale“@ ¢ (5)R,;% (5)dsd6 + " Oane”” ¢! (5)Rg;% (5)dsd
1.1 I

I.]

I.]

0

Complexity

(47)
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-0,

o 00? a(s—6) .T . 00 a(s—0) .T .
+ —e X" (5)S,;% (s)dsdvd0 + 0,5 X" (5)S,x (s)dsdvdo
2 J0Jy

-0, J 0 v 2

=0

-7,

0 0 0.2 0 0
+J J j ﬂea(s—e)yT(s)S3i)'/(s)dsdvd6+J J J Tl3ea(5_6)}"T(S)S4i)>(s)dsdvd6,
,JoJy

- Jol)y 2

=T

- a0, a

VP(O) (0) < {maXiGNAmax (Pli) + maXiENAmax (PZi) +0.€ maxieNAmax (Qli) + (02 -0 )e_ sza‘xiENAmax (QZi

+0ye P maxien e (Qs) + Tre” T maxiey A (Ry) + (73 = 71)e” T maxiey A (Ry)

+ e P maxig Ay (Ry;) + 2758 “Pmaxie A, (M) + 7,6 P max;eA g, (Ry) [max(lL;, L I)]z

3

1

3
o

—ao, - a0,
e “max;qyApay (Rei) + B} e “"max;eqnApay (Ryi)

1

3
+ %67 ' max;enA ey (Rs;) + M

2
3

T, T —aT,
)+ %‘3 maX;enAmay (Ryoi)

3

+ (02 B 01)3 - a0, 1 _—ar

T
5 e “?max;enAmay (Rgi) + ?@ MaX;enAmay (Ro;

3 3 >
T, _ (r,-11) _ o, -

1 -ar 2”4 *T; max R ZLpm a0
" 2 ¢ maXiEN/lmax (Rlli) + € iENAmax ( 12i) + 4 ¢

2 MaX;enAmay (Sli)

5

2 2 3
(02‘01)(02_01) - fe
+ e MzmaxieNAmax (821‘) + Zle o MaX;enAmax (S3i)

(48)

e " max;enAmax (S4i) }

x sup {10 O 1¥®)I°},

—p<t<0

<A+ A+ As006” 7 + A (0, — 0y)e” " + Ay0,e T+ AgTiE T

3
o
—-ar, — AT, —art, —ar, 1 _—ao;
+A (1, —1y)e T+ Agmae T+ 20 The P A e Y+ /\137e

3 3

3
1, 220 ey

3
0, _ T,-T) _ T, -
+Ay, 5 15716 ao, +)L16( 2 1) e T, +/\17?16 ary
(r,-1,)° S (r,-1,)° o
+ At 5 AV +A1971€_M1 + Ayt 5 AP +)L21Z16_M‘
2 2 3 5 2 2 3
(0 —0)(0 -0) T (T —T)(T -1)
2= 00— 0) - 2~ ) =1)
+1y e+ dy—te M+ )y, e ey,
4 4 4

=dc,.
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Then, we can easily obtain

Vo () = e{ZZl ((npifrai)= “")T}dcl, (49)

Vo () = x" (O0Px (D) + y" (Pyy (1)
> mitien [Amin (P1i) 1% (DI + Ain (P21 y ()1]
= (L + L){Ix O +1y DI}
(50)
From (49) and (50), we obtain
A 20 () “)T}dcl

51
(A +1,) GV

IO +ly ()] <

Therefore, by Definition 1, we conclude that
Il ()I* + Iy (t)II* < c,. This completes the proof.

0 0t
Remark 1. We introduce J J J
t

(07/2) %"
-0, (0 -0, J 60 Jtty
(s)Sli)é(s)dsdvd9+J j J 0136057 (5)8,,% (s)dsdy
-0, J O

t+v

0 0 rt o
do+ ,[ J J (3/2)e* P 5T (5)85, 7 (s)dsdvd + J J
T 6 Jt+y

-7, J 6
t
J 11,¢" 957 (5)S,,9(s)dsdvdf in our Lyapunov-Kra-
t+v

sovskii functional. The novel Lyapunov-Krasovskii func-
tional can make the stability criteria applicable to both fast
and slow time-varying delays directly. Besides, by using the
convex combination technique together with the Jensen
inequality lemma, less conservative criteria are obtained.

Case: we consider the following genetic regulatory
networks without switched term:

0, =-P,A-A"Pl +Q, +Q; + 0IRs + 0%, R, —

o _ a0 —ao,
®;=¢e 'R, -3¢ 'R,

_ _ 6 _
010 =PB,0O,53 = ‘73 “IR;,
1

©,, =R, +R; -
®,, = P,D,

o _ ar —ar;
Oy =e "Ry -3¢ IRy,

_ — 6
TT -
Oy =M, +U L,0,,5 = ?e IRy,
1

O;; = —¢

0., = —aaZET -aop
34 = —€ g te 8

= _ -—an,pl

O3 =¢ Ry,

— 6
O35 =—e

— o
1R7’
0y

T pT 2 2 —ar,
P,C-C P, + 1Ry + 1},R;y —e " 'Ry,

_aalQl + e—aUlQZ _ e—aalR7 _

Complexity

<'ﬂt) = —Ax(t) + Bg(y(t - 7(1))), (52)
y(#) ==Cy(t) + D (x(t — o (1))).

Based on Theorem 1, the next rate-independent corollary
is derived.

Corollary 1. The genetic regulatory network (52) is as-
ymptotically stable with respect to positive real numbers
0,,0,, Ty, Ty; if there exist symmetric positive definite ma-
trices Py, P,,Q,(n=1,2,3), R,(n=1,2,...,12), S, (n=
1,2,...,4), the diagonal matrix L, = diag(l,,,
l )>0,m = 1,2 such that the following LMIs hold

[R3 M,
>0,

[RG R6

DY S

[Rs Ry ]
(53)

Ry Ry |
* Ry ]

R12 E12 ]
* Ry, |
0 =8,

ij ] 22><22 <0,

where,

3¢ "R, —e¢ "R, + aPy,

-3¢ “"Ry, + aP,,

3e” aalR7 _e Y R8>



Complexity

—(1-0y)e “Q, +2¢ “Ry — 2¢ Ry,

P
=e "Ry +

—aoy AT
e "2Q, -

— QO
e 'Ry,

— a0
e "R,

- “"Ry+e "R, —e "Ry, -3¢ “"R;; —e "Ry,

—at, 51
—e terRlz

—ar,=T
_an
e R,

6 _
—e lXT]Rll
Ty

~(1-14)e
—ar, =T
e “"R, +

-(1-14)e

*(XTZ
+e Ry,

>

—art(t) —at, —art,
Ry +2e "Ry, —2e "?Ryy,
- ar
e 'Ry,

~TOM | + UL,

_ T _
—e txrzRZ —e m‘lez,

R, - 2L,
~(1-14)e

2 2
01R; + 07,

2 2 at
TRy + TRy, +e

-art,
R, -2L,,
oo, ao, ao,
e —ao, -1 e —e"" —a(o, - 0y)
at 2 at 2 1
RS +e Tsl +e 0(2 SZ’
ar, at, ar,
e —arz—ls we P —e —OC(TZ—Tl)S
———S;+e 5 ™
o o

12 _
—e"'Ry ——e “'R;,

—e""R,,
_ % Es’
g% R6’
_ett S,

at
- S,,

0y

12 _
_elXTI R9 _ —26 aTy Rll,

—"" Ry,
_earzﬁlo)
_etxrz RIO’
e Ss’

at
- 'S,

T

13

(54)
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Proof. The corollary follows by a similar argument as that in
proof of Theorem 1.

4. Numerical Example

In this section, numerical examples are provided to illustrate
the validity and the advantage of the proposed finite-time
stability of switched GRNs with time-varying delays.

Example 1. Consider switched GRNs with time-varying
delay (8) as

{X(t)=—AP(t)x(t)+Bp(t)g(y(t—r(t))), (55)
y() = =Cphyy () + Dy (x(t = 0 (1)),
with
200
A =l020]
LO 0 2
ro 0 -2
B,=|-2 0 0|
L0 -2 0
300
c, =03 ol
LO 0 3
0.9 0 0
D,=| 0 09 0|
LO 0 0.9
300 (56)
A,=l030]
LO 0 3
ro -150
B,=|-15 0 0],
L 0 -150
(4 00
C,=|040]|
LO 0 4
r.2 0 0
D,=| 0 12 0
L0 0 1.2

The activation function is chosen as U = diag{0.65,
0.65,0.65}, and the values of ¢, c,, T are given as follows:

Complexity

o, =0.7,
0, = 3.5,
O'd = 04,
T, = 0.6,
T, =32,
(57)

Ty = 02,
¢; = L5,
c, = 4.5,
T =6,

u=15.

We show the simulation result of the trajectories of the
variables x () and y (¢) in Figures 1 and 2. It should be point
out that the condition is feasible when employing the LMI
toolbox in MATLAB, solve LMIs (16)-(20), and then, we can
reach feasible solution. Hence, the switched GRNs (8) is
finite-time stable.

r 0.1837 —0.0007 —0.0007
P, =|-0.0007 0.1837 —-0.0007 |,
[ —0.0007 —0.0007 0.1837
r0.5336 0.0008 0.0008

P,, =|0.0008 0.5336 0.0008 |,
[0.0008 0.0008 0.5336

r 0.0419 —0.0000 —0.0000
Q,; =| —0.0000 0.0419 —0.0000 |,
[ —0.0000 —0.0000 0.0419
£0.0225 0.0000 0.0000
Q,; = 0.0000 0.0225 0.0000 |,
£0.0000 0.0000 0.0225 |
£0.1556 0.0003 0.0003
Qy, = 0.0003 0.1556 0.0003 |,
[0.0003 0.0003 0.1556 |
£0.0669 0.0001 0.0001
R, ={0.0001 0.0669 0.0001 |,
L0.0001 0.0001 0.0669 |
£0.0287 0.0000 0.0000
R,, = 0.0000 0.0287 0.0000 |,

L 0.0000 0.0000 0.0287
[ 0.1518 -0.0001 —0.0001
R;; =(-0.0001 0.1518 -0.0001 |,

L-0.0001 —-0.0001 0.1518



Complexity

£0.0389 0.0000 0.0000 0.0016 —0.0000 —0.0000

R,, =|0.0000 0.0389 0.0000 |, S,, =|—0.0000 0.0016 —0.0000 |,
[0.0000 0.0000 0.0389 ~0.0000 —0.0000 0.0016
r 0.0570 —0.0000 —0.0000 0.2915 0.0005 0.0005

Ry, =| -0.0000 0.0570 —0.0000 |, S, =107 x| 0.0005 0.2915 0.0005 |,
[ -0.0000 —0.0000 0.0570 0.0005 0.0005 0.2915
£0.0053 0.0000 0.00001 0.0023 0.0000 0.0000

R, =| 0.0000 0.0053 0.0000 |, S,, =|0.0000 0.0023 0.0000 |,
[0.0000 0.0000 0.0053 ] 0.0000 0.0000 0.0023
£0.0562 0.0000 0.0000 7 0.4960 0.0007 0.0007

R, =|0.0000 0.0562 0.0000 |, S, =107 x| 0.0007 0.4960 0.0007 |,
[0.0000 0.0000 0.0562 ] 0.0007 0.0007 0.4960
r 0.0057 —0.0000 —0.0000 r0.1747 0.0001 0.0001 ]

Rg, =| -0.0000 0.0057 —0.0000 |, Py, =|0.0001 0.1747 0.0001 |,

[ -0.0000 —0.0000 0.0057 [0.0001 0.0001 0.1747 |
£0.1006 0.0000 0.0000 7 £0.1267 0.0003 0.0003 ]

Ry, =|0.0000 0.1006 0.0000 |, P,, =| 0.0003 0.1267 0.0003 |,
[0.0000 0.0000 0.1006 ] [0.0003 0.0003 0.1267
£0.0094 0.0000 0.0000 7 r0.1265 0.0004 0.0004 7

Ry, = | 0.0000 0.0094 0.0000 |, Q,, = 0.0004 0.1265 0.0004 |,
[0.0000 0.0000 0.0094 ] [0.0004 0.0004 0.1265 ]

r 0.0627 —0.0001 —0.0001 ] r 0.1121 —0.0004 —0.0004

R, =|-0.0001 0.0627 —0.0001 |, Q,, =|—0.0004 0.1121 —0.0004 |,
[-0.0001 -0.0001 0.0627 | [ -0.0004 —0.0004 0.1121
r 0.0057 —0.0000 —0.0000 ] r0.1745 0.0014 0.0014

Ry, =|—0.0000 0.0057 —0.0000 |, Qy, =1 0.0014 0.1745 0.0014 |,
[-0.0000 —0.0000 0.0057 | [0.0014 0.0014 0.1745
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70.1231 0.0008 0.0008

0.0008 0.1231 0.0008 |,

[ 0.0008 0.0008 0.1231

[ 0.1145 -0.0005 -0.0005

—-0.0005 0.1145 -0.0005 |,

L -0.0005 -0.0005 0.1145

[0.1434 0.0020 0.0020 7

0.0020 0.1434 0.0020 |,

£ 0.0020 0.0020 0.1434 ]

[0.0863 0.0001 0.0001 7

0.0001 0.0863 0.0001 |,

£ 0.0001 0.0001 0.0863 |

[ 0.1176 -0.0002 —0.0002 7

-0.0002 0.1176 —0.0002 |,

L-0.0002 -0.0002 0.1176

[ 0.0641 -0.0005 —0.0005 7

—-0.0005 0.0641 -0.0005 |,

L —0.0005 -0.0005 0.0641

[ 0.0886 —0.0005 —0.0005 17

—0.0005 0.0886 —0.0005 |,

L —-0.0005 -0.0005 0.0886

r 0.1177 -0.0004 —0.0004 7

—-0.0004 0.1177 -0.0004 |,

L-0.0004 -0.0004 0.1177

R102 =

Ry =

Ry =

Complexity

[ 0.1230 —0.0001 —0.0001 7

—-0.0001 0.1230 -0.0001 |,

[ -0.0001 -0.0001 0.1230 ]

[ 0.0675 —0.0005 —0.0005 7

—0.0005 0.0675 -0.0005 |,

| —0.0005 —0.0005 0.0675 ]

[ 0.0878 —0.0006 —0.0006 7

—-0.0006 0.0878 —0.0006 |,

| —0.0006 —0.0006 0.0878 ]

[ 0.1055 —-0.0008 —0.0008 7

—-0.0008 0.1055 -0.0008 |,

| —0.0008 —0.0008 0.1055 ]

[ 0.1889 —0.0000 —0.0000 17

-0.0000 0.1889 -0.0000 |,

| —0.0000 —0.0000 0.1889 ]

0.0736 0.0000 0.0000

0.0000 0.0736 0.0000 |,

| 0.0000 0.0000 0.0736

- 0.1937 -0.0000 —0.0000

—-0.0000 0.1937 -0.0000 |,

| —0.0000 —0.0000 0.1937

0.0685 0.0000 0.0000

0.0000 0.0685 0.0000 |.

. 0.0000 0.0000 0.0685

(58)
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1 4
g 05 1
g
k=1
S 0 Az
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3
<
05 ]
g
—1 ]
~15 ' ' ' ' ' ' '
0 5 10 15 20 25 30 35 40
t (sec)
— X ()
— X (1)
— x3(t)
Ficure 1: The mRNA concentrations x (f) in Example 1.
0.25
0.2
0.15 | '
N
2 o1} | ﬁ |
'g | f J ‘\ ﬂ‘ ‘ & ﬂ
£ 0.05 |
g | \‘M M’ M AAM A A A A
g O FI 1 il k/ v Y “fww“v Yy
8 ‘ [ W |l w
= -0.05 Il ‘w\ (|
o ‘ V U
S o1 i V
= L
-0.15 } I
-0.2
-0.25 ' : : : : : :
0 5 10 15 20 25 30 35 40
t (sec)
— n®
— »n®
y3 (D
FIGURE 2: Protein concentrations y(¢) in Example 2.
TaBLE 1: The maximum allowable time delay upper bound for 7, with different values of 0,,.
0y 0.125 0.25 0.55 1.0 1.1
[15] 0.5 — — -8 _
(16] — — 1.0 — —
[17] 2.8273 2.1661 1.1544 0.4904 0.3845
[18] 3.2957 3.1932 2.9455 2.5661 2.4799
Corollary 3.3 5.4924 5.0257 4.6412 4.4670 3.9249
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0.3
0.25
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S
g
= 015
3
=
8
< 01
Z
~
g 005
0 -
-0.05 \
0 5 10 15 20 25 30 35 40
t (sec)
— X (t)
— X3 (t)
— x3(t)
FIGURE 3: The trajectories of x(f) in Example 2.
Example 2
300
A={03 0]
L0 0 3
r o 0 -25

B=(-25 0 0 |

L 0 25 0

(59)
25 0 07
C=|0 25 0 |
L0 0 25]
0.8 0 07
D={0 08 0 |,
L0 0 08]

g(y) = y*11 + y* and U = diag{0.65,0.65, 0.65}.

Furthermore, for the parameters listed above, let 7; = 0.5
and o, = 0.5.

In order to compare the results in [15-18], using Cor-
ollary 1, the comparison results are listed in Table 1 for 7,.
Clearly, the results proposed in this study provide a larger
admissible upper bound delay to guarantee the asymptoti-
cally stable system (52). In addition, the trajectories of the
genetic regulatory network (52) are shown in Figures 3
and 4.

Remark 2. The discussion in Example 2 illustrates that the
conditions in this study (Corollary 1) is less conservative
than those in [15-18], which shows the superiority of our
method compared with that in [15-18].

Complexity

0.2
0.15
]
8
s 01
=
8
=
3
= 0.05 |-
L
g
[a}
0 [
-0.0 .
0 5 10 15 20 25 30 35 40
t (sec)
— n®
— »n®
y3(8)

FIGURE 4: The trajectories of y(f) in Example 2.

Example 3. Consider the following switched GRNs with
time-varying delay:

x(t) = —Ap(t)x(t) +Bp(¢)g(y(t—f(t))), (60)
() ==Cphyy () + Dy (x(t = a (1)),
with
(3 0
Al = ,
L0 3
[0.81 —-0.20
B, = ,
[0.10 0.64
"3 0
C, = ,
L0 3]
10
D, = ,
[0 1]
(61)
"4 0
A, = ,
[0 4]
[0.1 -1
B, = ,
L-1 0.1
(4 0
C, = ,
L0 4
0.8 0
D, = .
L 0 0.8

The activation function is chosen as U = diag{0.2, 0.2}, and
the values of ¢;,c,, T are given as follows:



Complexity

o, =02,

0, =3.2,

o;=1,

7, = 0.1,

7, =0.3, 62)
7, =0.1,

=1

¢, =32,

T =4,

u=0.9.

By employing the LMI toolbox in MATLAB, solve LMIs
(16)-(20), and the feasible solutions are then reached.

5. Conclusion

In this study, a finite-time stability analysis for switched
GRNs with time-varying delays has been investigated. We
utilized the reciprocally convex combination method,
Wirtinger’s integral inequality, and new triple integral with
exponential function in Lyapunov-Krasovskii functionals;
a less conservative LMI-based finite-time stability criterion is
obtained with the switched ADT approach to reduce the
conservatism of our results, compared with existing ones. A
numerical example has been given to demonstrate the ef-
fectiveness and the advantage of our proposed methods.
State estimation as well as other research topics such as
switched lure systems and complex networks [55, 56] and
stabilization of probabilistic Boolean networks [57, 58] of the
time delay systems will be further investigated based on the
methods proposed in this study.
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