
Research Article
OnL(h, k)-Labeling Indexof InverseGraphsAssociatedwithFinite
Cyclic Groups

K. Mageshwaran,1 G. Kalaimurugan,1 Bussakorn Hammachukiattikul ,2

Vediyappan Govindan,3 and Ismail Naci Cangul 4

1Department of Mathematics, �iruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
2Basic Sciences and Mathematics, Faculty of Engineering, �ai-Nichi Institute of Technology, Bangkok, 10250, �ailand
3Department of Mathematics, Sri Vidya Mandir Arts & Science College, Katteri, Uthangarai, India
4Bursa Uludag University, Bursa, Turkey

Correspondence should be addressed to Bussakorn Hammachukiattikul; bussakorn@tni.ac.th

Received 24 January 2021; Accepted 11 March 2021; Published 26 March 2021

Academic Editor: Ljubisa Kocinac

Copyright © 2021 K. Mageshwaran et al. *is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

An L(h, k)-labeling of a graph G � (V, E) is a function f: V⟶ [0,∞) such that the positive difference between labels of the
neighbouring vertices is at least h and the positive difference between the vertices separated by a distance 2 is at least k. *e
difference between the highest and lowest assigned values is the index of an L(h, k)-labeling.*e minimum number for which the
graph admits an L(h, k)-labeling is called the required possible index of L(h, k)-labeling of G, and it is denoted by λh

k(G). In this
paper, we obtain an upper bound for the index of the L(h, k)-labeling for an inverse graph associated with a finite cyclic group, and
we also establish the fact that the upper bound is sharp. Finally, we investigate a relation between L(h, k)-labeling with radio
labeling of an inverse graph associated with a finite cyclic group.

1. Introduction

*e frequency assignment problem (FAP) interacts with the
assignment of frequencies to locations in such a manner that
there is no interruption between frequencies allotted to the
neighbouring locations while attempting to reduce the index
of the allocated frequencies (the difference between the
highest and lowest frequency bands). *ere are plenty of
graph theoretical models for solving FAP, but many of them
are NP-hard [1]. Specifically, FAP has been represented as a
graph labeling problem to allocate frequencies to trans-
ceivers in a wireless communication such as a cellular
network or a radio network. With the massive growth in the
required calls in the network, we must find an effective
assessment of frequency in the network having a minimal
index. Here, vertices represent the transceivers and lines
represent couples of locations that overlap with each other.

*e motivation for the study of L(h, k)-labelings is the
allocation of radio frequency of transceivers in the

interruption range [2]. *is radio frequency problem can
be perfectly examined by L(h, k) problem. In L(h, k)

problem, all transceivers are allocated a frequency so that
the distinction between the labels of neighbouring
transceivers is at leasth and the distinction between
transceivers separated by a distance 2 is at least k. *e
variation between the maximum and minimum allotted
values is the index of an L(h, k)-labeling. *e theoretical
explanation of this graph emerges from the problem of
allocating frequencies to a wireless network’s transceivers
to prevent any form of disruption. *e geographical dis-
tance and the purpose of the atmosphere in this setting are
the main factors that decide the h andk parameters, and
h≥ k is generally expected. L(h, k)-labelings have been
studied by various authors, see [3, 4] and survey in [5].
Recently, Mitra and Bhoumik [6] provided an upper
bound of the span of three specific cases of circulant
graphs. Song et al. [3] proved that the labeling of L(j, k) for
the complete graph is the direct product.*e radio labeling
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applies to the number of interruption permissible levels
considered in the L(2, 1)-labeling from two to the highest
allowable diameter of G. *e highest allowable distance
between every couple of vertices inG is denoted by
diam(G). In [7], Chartrand presented the idea of radio
labeling and discussed the radio number for cycles and
paths in [8] by Liu and Zhu. For a detailed survey of graph
labelings, one can refer to [9].

Since Cayley graphs, many relations between groups and
graphs have been established and interest began to be on
such relations. *e inverse graphs associated with finite
groups were recently introduced and analyzed by Alfuraidan
and Zakariya [10], as a new example of such relations. *ey
developed some important graph theoretical aspects of the
inverse graphs of certain finite groups that really shine as a
spotlight on algebraic aspects of the groups. *ey defined an
interconnection in between the algebraic aspects of the finite
groups and the graph theoretical aspects of the identified
inverse graphs. *e inverse graph was utilized to categorize
certain problems of isomorphism in finite groups. In the
same way, Kalaimurugan and Megeshwaran [11] explored
the Zk-magic index on the inverse graph.

On the contrary, Ejima et al. [12] had found the inverse
graphs of dihedral and symmetric groups. Very recently,
some properties of finite group invertible graphs have been
investigated by Chalapathi and Kiran-Kumar [13]; in-
vertible graphs have been established and some interesting
results on them have been obtained using finite group
classification.*e chromatic number, girth, clique number,
diameter, and size have been calculated for each finite
group. Jones and Lawson [8] investigated the inverse graph
of the large semigroup of a graph-related topological
groupoid and the semigroup analogue called the Leavitt
path algebra. Let G be a finite simple connected graph
whose vertex set V(G) and edge set E(G) with |V(G)| � p

and |E(G)| � q. *e open neighbourhood N(v) of a vertex
v ∈ V(G) is the set of all vertices which are adjacent tov. We
follow [14] for graph theoretic terminology. Note that the
inverse graph of a finite cyclic group G � GS(Zn) is simple
and connected. To the best of our observations, for the very
first time, we investigate the L(h, k)-labeling of the inverse
graphs in this paper and we give the exact minimum span of
L(h, k)-labeling of inverse graphs associated with finite
cyclic groups.

2. Preliminaries

We now recall some powerful and known results used in the
proofs of our new results.

Definition 1 (see [15]). Griggs and Yeh introduced an
L(2, 1)-labeling of a graph G(V, E) as a function
f: V(G)⟶ 0, 1, . . . , n{ } such that |f(u) − f(v)| ≥ 2 if
d(u, v) � 1 and |f(u) − f(v)|≥ 1 if d(u, v) � 2, where
d(u, v) denotes the shortest path in between the vertices u

andv. �e minimum index for certain possible functions of
L(2, 1) labeling is indicated by λ(2,1)(G) and referred to as
λ(2,1) number of G.

Definition 2 (see [3]). If h, k(h≥ k) are positive integers,
then the L(h, k)-labeling of a graph G � (V, E) is a function
f: V⟶ [0,∞) such that

|f(u) − f(v)|≥
h, if d(u, v) � 1,

k, if d(u, v) � 2.
􏼨 (1)

*emaximum label attained by f is referred to the index
of f. *e minimum index for a certain possible function f is
the λh

k-number of G denoted by λh
k(G).

Definition 3 (see [7, 8]). A radio labeling of a graph G(V, E)

is a one-to-one function f: V⟶ [0,∞) such that, for each
u, v ∈ V, |f(u) − f(v)|≥ diam(G) − d(u, v) + 1. *e index
of f is the variation of the highest and the lowest frequencies
utilized, that is, maxu,v∈V f(u) − f(v)􏼈 􏼉 for each pairs
u, v ∈ V. *e radio number of G is the index of a radio
labeling of G and is denoted by rn(G).

Definition 4 (see [10]). Let (Γ, ∗ ) be a finite group and
S � u ∈ Γ|u≠ u− 1􏼈 􏼉. *e inverse graph GS(Γ) associated
with Γ as the graph whose vertex set coincides with Γ such
that two different verticesu andv are adjacent iff either
uv ∈ S or vu ∈ S. When Γ is the cyclic group Zn and S is the
set of non-self-inverse elements of Zn, GS(Γ) is called the
inverse graph of a finite cyclic group G � GS(Zn).

Theorem 1 (see [10]). If Γ is a finite abelian group, which
contains three or more elements, and if S is a nonempty subset
of the non self-invertible elements, then GS(Γ) is a connected
graph.

Theorem 2 (see [10]). If Γ is an arbitrary finite group, then
the inverse graph is not complete.

Theorem 3 (see [10]). A connected inverse graph has di-
ameter two.

3. Main Results

We prove the following results on the inverse graphs asso-
ciated with a finite cyclic group admitting an L(h, k)-labeling
having minimum index.

Theorem 4. Let n≥ 3 be an odd integer. �en, the inverse
graph GS(Zn) admits an L(h, k)-labeling with λh

k(GS(Zn))

≤ (n − 1/2)(h + k) and this bound is sharp.

Proof. Sincen is odd, the unique self-invertible element is 0.
Let G � GS(Zn) be the inverse graph associated with a finite
cyclic group. Let V(G) � S1 ∪ S2 ∪ S3, where S1 � v0􏼈 􏼉, S2 �

v1, v2, . . . , v(n− 1/2)􏽮 􏽯, and S3 � v(n+1/2), v(n+1/2)+1, v(n+1/2)+2,􏽮

. . . , vn− 1}. Define the function f: V(G)⟶ 0, 1, . . . , n{ } by

f vi( 􏼁 �

0, if v0 ∈ S1,

ih +(i − 1)k, if vi ∈ S2,

(n − i)(h + k), if vi ∈ S3.

⎧⎪⎪⎨

⎪⎪⎩
(2)
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Case (i): if v0 ∈ S1 and vj are the elements of S2 (or S3),
then d(v0, vj) � 1. We claim that |f(v0) − f(vj)|≥ h.
For the function f, we have h≤ |f(vi) − f(vj)|

≤ (n − 1/2)(h + k).
Case (ii): if vi and vj are the elements of S2 (or S3), then
d(vi, vj) � 1. We claim that |f(vi) − f(vj)|≥ h. We
have h + k≤ |f(vi) − f(vj)|≤ (n − 3/2)(h + k)≤ (n −

1/2)(h + k).
Case (iii): if vi ∈ S2 and vj ∈ S3 − vn− i􏼈 􏼉, then d(vi, vj) �

1 where, j≠ n − i. We claim that |f(vi) − f(vj)|≥ h. We
have h≤ |f(vi) − f(vj)|≤ (n − 1/2) (h + k) − h≤ (n −

1/2)(h + k).
Case (iv): if vi ∈ S2 and vj � vn− i ∈ S3, then d(vi, vj) � 2,
where j � n − i. We claim that |f(vi) − f(vj)|≥ k. We
have k≤ |f(vi) − f(vj)|. Figure 1 illustrates that the
bound on the graph index is sharp. □

Theorem 5. Letn be even and h and k be positive integers
with k≥ ⌈h/2⌉. �en, the inverse graph GS(Zn) admits an
L(h, k)-labeling with

λh
k GS Zn( 􏼁( 􏼁≤

n − 2
4

(h + 3k) + k, if n ≡ 2(mod 4),

n

4
(h + 3k) − k, if n ≡ 0(mod 4).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

Also, these bounds are sharp.

Proof
Case (a): let n ≡ 2(mod 4). Sincen is even, then the self-
invertible elements are 0 and (n/2). Let G � GS(Zn) be
the inverse graph associated with a finite cyclic group.
Let V(G) � S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6, where S1 � v0􏼈 􏼉

S2 � v1, v2, . . . , v(n− 2/4)􏽮 􏽯, S3 � v(n− 2/4)+1, v(n− 2/4)+2,􏽮

. . . , v(n/2)− 1}, S4 � v(n/2)+1, v(n/2)+2, . . . , v(3n− 2/4)􏽮 􏽯, S5 �

v(3n− 2/4)+1, v(3n− 2/4)+2, . . . , vn− 1􏽮 􏽯, and S6 � v(n/2)􏽮 􏽯. De-
fine the function f: V(G)⟶ 0, 1, . . . , n{ }. *en,

f vi( 􏼁 �

0, if v0 ∈ S1,

ih +(3(i − 1) + 1)k, if vi ∈ S2.

n

2
− i􏼒 􏼓h + 3

n

2
− i􏼒 􏼓 − 1􏼒 􏼓k, if vi ∈ S3,

i −
n

2
􏼒 􏼓h + 3 i −

n

2
􏼒 􏼓k􏼒 􏼓, if vi ∈ S4,

(n − i)h +(3(n − i) + 1)k, if vi ∈ S5,

k, if v(n/2) ∈ S6.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Subcase (i): if vi and vj are distinct elements in Sp for
all 2≤p≤ 5, then d(vi, vj) � 1. We claim that
|f(vi) − f(vj)|≥ h. We have h + 3k≤ |f(vi) −

f(vj)|≤ (n − 6/4)(h + 3k). Clearly, h + 3k≥ h. Hence,
|f(vi) − f(vj)|≥ h.
Subcase (ii): let vi ∈ S2 and vj ∈ S3 with i≠ j be the
adjacent vertices iff j≠ (n/2) − i. Assume that j≠
(n/2) − i; then, d(vi, vj) � 1. For the function f, we
have (h + 2k)≤ |f(vi) − f(vj)|≤ (n − 6/4)(h + 3k)

+ k. Clearly, |f(vi) − f(vj)|≥ h. If j � (n/2) − i,
then d(vi, vj) � 2. We have k � |f(vi) − f(vj)|.
Suppose the element vj ∈ S4; then, d(vi, vj) � 1. We
have h+ 2k≤ |f(vi) − f(vj)|≤ (n − 6/4)(h + 3k) + 2k.
Clearly, |f(vi) − f(vj)|≥ h. Suppose the element
vj ∈ S5 and vi adjacent to vj iff j≠ n − i. Assume that
j≠ n − i; then, d(vi, vj) � 1. For the function f, we
have (h + 2k)≤ |f(vi) − f(vj)|≤ (n − 6/4)(h + 3k)

+ 3k. If j � n − i, then d(vi, vj) � 2. By the function f,
|f(vi) − f(vj)| � 3k≥ k.
Subcase (iii): if vi ∈ S3, then suppose vj ∈ S4 and vi is
adjacent to vj iff j≠ n − i. If j≠ n − i, then d(vi,

vj) � 1. We then have h + 4k≤ |f(vi) − f(vj)|≤
(n − 6/4)(h + 3k) + k. Clearly, |f(vi) − f(vj)|≥ h. If
j � n − i, then d(vi, vj) � 2. We have |f(vi) −

f(vj)| � k. Suppose that vj ∈ S5; then, d(vi, vj) � 1.
We have 2k≤ |f(vi) − f(vj)|≤ (n − 2/4)(h + 3k) − k.
Clearly, k≥ ⌈h/2⌉ such that 2k≥ h. Hence, |f(vi) −

f(vj)|≥ h.
Subcase (iv): let vi ∈ S4 and vj ∈ S5 vi adjacent to vj iff
j≠ (3n/2) − i. j≠ (3n/2) − i, then d(vi, vj) � 1. We
then have h + 2k≤ |f(vi) − f(vj)|≤ (n − 6/4)(h +

3k). Clearly, |f(vi) − f(vj)|≥ h. If j � (3n/2) − i, then
d(vi, vj) � 2. We have k � |f(vi) − f(vj)|.
Subcase (v): the vertex v0 is not adjacent to v(n/2) and
d(v0, v(n/2)) � 2. Now, |f(vi) − f(vj)| � k. *e vertex
v0 is adjacent to all other vertices. *en, d(v0, vj) � 1,
where j≠ (n/2). We have h + k≤ |f(vi) − f(vj)|≤
(n − 2/4)(h + 3k) + k. Suppose that the vertex v(n/2) is
adjacent to all other vertices. *en, d(v(n/2), vj) � 1,

0

h

2h + k

3h + 2k
3(h + k)

2(h + k)

h + k

Figure 1: λh
k(GS(Z7)) � 3(h + k).
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where j≠ 0. Now, we have h≤ |f(v(n/2)) − f(vj)|≤
(n − 2/4)(h + 3k).

Case (b): if n ≡ 0(mod 4). Sincen is even, then the self-
invertible elements are 0 and (n/2). Let G � GS(Zn) be
the inverse graph associated with a finite cyclic group. Let
V(G) � S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 ∪ S7 ∪ S8, where S1 �

v0􏼈 􏼉, S2 � v1, v2, . . . , v(n/4)− 1􏽮 􏽯, S3 � v(n/4)+1, v(n/4)+2,􏽮

. . . , v(n/2)− 1}, S4 � v(n/2)+1, v(n/2)+2, . . . , v(3n/4)− 1􏽮 􏽯, S5 �

v(3n/4)+1, v(3n/4)+2, . . . , vn− 1􏽮 􏽯, S6 � v(n/2)􏽮 􏽯, S7 � v(n/4)􏽮 􏽯,
and S8 � v(3n/4)􏽮 􏽯. Define the function f: V(G)⟶
0, 1, . . . , n{ }. *en,

f vi( 􏼁 �

0, if v0 ∈ S1,

ih +(3(i − 1) + 1)k, if vi ∈ S2,

n

2
− i􏼒 􏼓h + 3

n

2
− i􏼒 􏼓 − 1􏼒 􏼓k, if vi ∈ S3,

i −
n

2
􏼒 􏼓h + 3 i −

n

2
􏼒 􏼓k􏼒 􏼓, if vi ∈ S4,

(n − i)h +(3(n − i) + 1)k, if vi ∈ S5,

k, if v(n/2) ∈ S6,

n

4
(h + 3k) − 2k, if v(n/4) ∈ S7,

n

4
(h + 3k) − k, if v(3n/4) ∈ S8.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

In the case n ≡ 0(mod4), we similarly have the following.
*e vertex v(n/4) is not adjacent to v(3n/4), and therefore,
d(v(n/4), v(3n/4)) � 2. Now, |f(vi) − f(vj)| � k. *e vertex
v(n/4) is adjacent to all other vertices. *en, d(v(n/4), vj) � 1,
where j≠ (3n/4). We now have h≤ |f(v0) − f(vj)|≤
(n/4)(h + 3k) − 2k. Suppose that the vertex v(3n/4) is adjacent
to all other vertices. *en, d(v(3n/4), vj) � 1, where j≠ (n/4).
We have h + k≤ |f(vn/2) − f(vj)|≤ (n/4)(h + 3k) − k. Fig-
ures 2 and 3 illustrate that the bounds are sharp. □

Theorem 6. Let n be even and h andk be positive integers
with k< ⌈h/2⌉. �en, the inverse graph GS(Zn) admits an
L(h, k)-labeling with

λh
k GS Zn( 􏼁( 􏼁≤

n − 2
2

h +
n + 2
4

k, if n ≡ 2(mod 4),

n

2
− 1􏼒 􏼓h +

n + 4
4

k, if n ≡ 0(mod 4).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

Finally, these bounds are sharp.

Proof. We have the following cases:

Case (a): if n ≡ 2(mod 4), since n is even, the self-in-
vertible elements are 0 and (n/2). Let G � GS(Zn) be
the inverse graph associated with a finite cyclic group.
Let V(G) � S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6, where S1 � v0􏼈 􏼉,
S2 � v1, v2, . . . , v(n− 2/4)􏽮 􏽯, S3 � v(n− 2/4)+1, v(n− 2/4)+2,􏽮

. . . , v(n/2)− 1}, S4 � v(n/2)+1, v(n/2)+2, . . . , v(3n− 2/4)􏽮 􏽯, S5 �

v(3n− 2/4)+1, v(3n− 2/4)+2, . . . , vn− 1􏽮 􏽯, and S6 � v(n/2)􏽮 􏽯. De-
fine the function f: V(G)⟶ 0, 1, . . . , n{ }:

f vi( 􏼁 �

0, if v0 ∈ S1,

(2(i − 1) + 1)h + k, if vi ∈ S2,

2
n

2
− i􏼒 􏼓 − 1􏼒 􏼓h +

n

2
− i + 1􏼒 􏼓k, if vi ∈ S3,

i −
n

2
􏼒 􏼓2h + i −

n

2
􏼒 􏼓k, if vi ∈ S4,

(n − i)2h +(n − i + 1)k, if vi ∈ S5,

k, if v(n/2) ∈ S6.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Subcase (i): if vi and vj are distinct elements in Sp, for
all 2≤p≤ 5, then d(vi, vj) � 1. We claim that
|f(vi) − f(vj)|≥ h. We have 2h + k≤ |f(vi) − f(vj)|

≤ (n − 6/4)(2h + k). Clearly, 2h + k≥ h. Hence,
|f(vi) − f(vj)|≥ h.
Subcase (ii): let vi ∈ S2 and vj ∈ S3 with i≠ j be the
adjacent vertices iff j≠ (n/2) − i. Assume that j≠
(n/2) − i; then, d(vi, vj) � 1. We have 2h + 2k≤
|f(vi) − f(vj)|≤ (n − 6/4)(2h + k) + k. Clearly, |f

0

2h + 4k

2h + 5k

h + 2k

k

2h + 7k

2h + 6k

h + 3k

h + 4k h + k

Figure 2: λh
k(GS(Z10)) � 2h + 7k.
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(vi) − f(vj)|≥ h. If j � (n/2) − i, then d(vi, vj) � 2.
We then have k � |f(vi) − f(vj)|. Suppose that the
element vj ∈ S4; then, d(vi, vj) � 1. We have
h≤ |f(vi) − f(vj)|≤ (n − 2/4)(2h + 3k) − (h + k).
Clearly, |f(vi) − f(vj)|≥ h. Suppose that the element
vj ∈ S5, vi is adjacent to vj iff j≠ n − i. Assume that
j≠ n − i, then d(vi, vj) � 1. For the function f, we
have h≤ |f(vi) − f(vj)|≤ (n − 6/4)(2h + k) + (h + k).
If j � n − i, then d(vi, vj) � 2. Hence, |f(vi) −

f(vj)| � h + k≥ k.
Subcase(iii): If vi ∈ S3, suppose vj ∈ S4 and vi is ad-
jacent to vj iffj≠ n − i. If j≠ n − i, then d(vi, vj) � 1.
We have h + 2k≤ |f(vi) − f(vj)|≤ (n − 6/4) (2h + k)

+ h. Clearly, |f(vi) − f(vj)|≥ h. If j � n − i, then
d(vi, vj) � 2. We have |f(vi) − f(vj)| � h − k.
Clearly, k< (h/2). *en, 2k< h implies that h − k> k.
Hence, |f(vi) − f(vj)|≥ k. Suppose that vj ∈ S5.
*en, d(vi, vj) � 1. We have h≤ |f(vi) − f(vj)|≤
(n − 6/4)(2h + k) + h. Clearly, |f(vi) − f(vj)|≥ h.
Subcase (iv): let vi ∈ S4 and vj ∈ S5 with vi is adjacent
to vj iff j≠ (3n/2) − i. j≠ (3n/2) − i; then, d(vi, vj)

� 1. We have 2h≤ |f(vi) − f(vj)|≤ (n − 6/4)(2h + k)

+ k. Clearly, |f(vi) − f(vj)|≥ h. If j � (3n/2) − i, then
d(vi, vj) � 2. We then have k � |f(vi) − f(vj)|.
Subcase (v): the vertex v0 is not adjacent to v(n/2) and
d(v0, v(n/2)) � 2. Here, |f(vi) − f(vj)| � k. *e vertex
v0 is adjacent to all other vertices. *en, d(v0, vj) � 1,
where j≠ (n/2). We have h + k≤ |f(v0) − f(vj)|≤
(n − 2/2)h + (n + 2/4)k. Suppose that the vertex v(n/2)

is adjacent to all other vertices. *en, d(v(n/2), vj) � 1,
where j≠ 0. We have h≤ |f(v(n/2)) − f(vj)|≤ (n −

2/2)h + (n − 2/4)k.

Case (b): if n ≡ 0(mod 4), since n is even, then the self-
invertible elements are 0 and (n/2). Let G � GS(Zn) be
the inverse graph associated with a finite cyclic group.
Let V(G) � S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 ∪ S7 ∪ S8, where
S1 � v0􏼈 􏼉, S2 � v1, v2, . . . , v(n/4)− 1􏽮 􏽯, S3 � v(n/4)+1,􏽮

v(n/4)+2, . . . , v(n/2)− 1 }, S4 � v(n/2)+1, v(n/2)+2, . . . ,􏽮

v(3n/4)− 1}, S5 � v(3n/4)+1, v(3n/4)+2, . . . , vn− 1􏽮 􏽯, S6 �

v(n/2)􏽮 􏽯, S7 � v(n/4)􏽮 􏽯, and S8 � v(3n/4)􏽮 􏽯. Define a
function f: V(G)⟶ 0, 1, . . . , n{ }. *en,

f vi( 􏼁 �

0, if v0 ∈ S1,

(2(i − 1) + 1)h + k, if vi ∈ S2,

2
n

2
− i􏼒 􏼓 − 1􏼒 􏼓h +

n

2
, − i + 1􏼒 􏼓k, if vi ∈ S3,

i −
n

2
􏼒 􏼓2h + i −

n

2
􏼒 􏼓k, if vi ∈ S4,

(n − i)2h +(n − i + 1)k, if vi ∈ S5,

k, if v(n/2) ∈ S6,

n

2
− 1􏼒 􏼓h +

n

4
k, if v(n/4) ∈ S7,

n

2
− 1􏼒 􏼓h +

n + 4
4

􏼒 􏼓k, if v(3n/4) ∈ S8.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

*e case n ≡ 0(mod 4) can be dealt similarly as follows.
*e vertex v(n/4) is not adjacent to v(3n/4) and d(v(n/4),

v(3n/4)) � 2. *en, |f(vi) − f(vj)| � k. *e vertex v(n/4) is
adjacent to all other vertices. *en, d(v(n/4), vj) � 1, where
j≠ (3n/4). We have h≤ |f(v0) − f(vj)|≤ ((n/2) − 1)h +

(n/4)k. Suppose the vertex v(3n/4) is adjacent to all other
vertices. *en, d(v(3n/4), vj) � 1, where j≠ (n/4). We hence
have h + k≤ |f(v(n/4)) − f(vj)|≤ ((n/2) − 1)h + (n + 4/4)k.
Figures 4 and 5 illustrate that the bounds are sharp. □

0

2(h + 3k) – 2k2(h + 3k) – k

h + 2kh + 3k

k

h + k
h + 4k

Figure 3: λh
k(GS(Z8)) � 2h + 5k.
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4. Relation between L(h, k) and the
Radio Labeling

*e radio labeling idea is applied to a large number of in-
terruption permissible levels in L(h, k)-labeling from h to
the maximum allowable diameter of G, where h � 2 and
k � 1. By *eorem 3, diam(GS(Zn)) � 2. Hence, the max-
imum distance is 2 so that the possible distance of GS(Zn) is
1 or 2. By radio labeling given in Definition 3, a graph
G(V, E) is a one-to-one function f: V⟶ [0,∞) such that,
for every u, v ∈ V, |f(u) − f(v)| ≥ 1+ diam(G) − d(u, v).
We have the following cases.

Case (a): let d(u, v) � 2. If diam(GS(Zn)) � 2 and
d(u, v) � 2, then, by the function of radio labeling f,
we have |f(u) − f(v)|≥ 1 + 2 − 2. Clearly, |f(vi) −

f(vj)|≥ 1.

Case (b): let d(u, v) � 1. If diam(GS(Zn)) � 2 and
d(u, v) � 1, then we have |f(u) − f(v)|≥ 1 + 2 − 1.
Clearly, |f(vi) − f(vj)|≥ 2.

By the above cases, one can easily conclude that radio
labeling is the same asL(h, k)-labeling when h � 2 and k � 1.

Clearly, the proof of the*eorems in Section 3 is directly
applicable to the radio labeling. Hence, GS(Zn) admits radio
labeling with minimum index.

5. Conclusion and Further Research Work

In this paper, we have worked on L(h, k) labeling of a new
family of graphs, i.e., an inverse graph with a finite cyclic
group. We provided the upper bounds of the index for five
specific cases, that is, n(≥ 3) is an odd integer; then,
λh

k(GS(Zn))≤ (n − 1/2)(h + k);n is even integer with k≥
⌈h/2⌉ and n ≡ 2(mod 4), then λh

k(GS(Zn))≤ (n − 2/4)

(h + 3k) + k;n is even integer with k≥ ⌈h/2⌉ and n ≡
0(mod 4), then λh

k(GS(Zn))≤ (n/4)(h + 3k) − k; n is even
integer with k< ⌈h/2⌉ and n ≡ 2(mod 4), then λh

k(GS(Zn))

≤ (n − 2/2)h + (n + 2/4)k;n is even integer with k< ⌈h/2⌉

and n ≡ 0(mod 4), then λh
k(GS(Zn))≤ ((n/2) − 1)h +

(n + 4/4)k. We have generalized the results and obtained the
bounds for L(h, k) labeling of inverse graph of a finite cyclic
group of order n. *e novelty of this research is bounds of
the index which are sharp and the results are directly ap-
plicable to the radio labeling minimum index. However, the
problem remains open to find L(h, k)-labeling with the
minimum index for the inverse graphs of dihedral and
symmetric groups in general. Furthermore, research is in-
spired to notice the L(h, k) labeling of the inverse graph for
an arbitrary finite group.
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